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Abstract

In this project, we built a web application that person-
alizes media recommendations using only facial sentiment
data. Recommending systems typically rely on implicit feed-
back from user-item interactions for the purposes of de-
veloping a preference profile for users. Our system ap-
proaches this problem in a novel and interesting way. Our
data servers run both locally and on GCP with high stabil-
ity and speed. With more user data collected, the system
will become smarter and generate better recommendations.

1. Introduction
We live in the age of information explosion. Tech giants

like Google and Amazon rely heavily on the vast amount
of user data they possess to optimize the user experience
and recommend the most relevant content[8]. Luckily, with
the development of big data tools and artificial intelligence,
we have increasingly robust and accurate methods to help
personalize a user’s app experience.

Traditional approaches implementing content recom-
mendation systems, such as collaborative filtering, often
rely on the user’s history ratings, which typically comes
explicitly from the user’s item ratings, or implicitly from
their browsing frequency[2]. Potential issues exist in
current recommendation systems. For instance, the system
needs a large amount of accumulated history data to make
a reliable prediction, which means it might not work well
for new users. Another potential issue is that the system
can’t distinguish real users apart from the account name,
i.e., one can’t get the correct recommendation when using a
borrowed phone from friends. Furthermore, those systems
didn’t use any other information from users other than
browsing history, which is less robust.

To address these issues, our objective is to design an
end-to-end system that can identify different users, obtain
their facial information, learn their interests, and make

recommendations. To achieve that, at least three major
subsystems need to be established. We first built a facial
recognition and analysis system. This system takes images
as input and combines the results of several Convolution
Neural Networks. The second is a recommendation system,
which can analyze the result of the first system and produce
a corresponding recommendation. Last we have a web
server system, which works as a framework to provide the
user interface and send commands to other subsystems.

2. Related Work

Although many other works try to solve the problem
of recommending relevant media content to users, we
are unaware of any applications or attempt to use user’s
facial information to generate recommendations. Fortu-
nately, the idea of using Convolution Neural Networks to
recognize and analyze faces has been raised years ago,
and many useful tools are now available[6, 11, 5]. Some
related works are MTCNN[10], InceptionResnetV1[7],
and densenet121[4]. Those models are well known and
widely used in different areas. Here, we use them to
analyze the facial feature of users and extract important
information for the recommendation. Another paper we
brought ideas from is A Compact Embedding for Facial
Expression Similarity[9]. Instead of focusing on discrete
emotion recognition, like pre-defined semantic categories,
Agarwala et al. describe facial expressions in a continuous
fashion using a compact embedding space that mimics
human visual preferences.

The approach used to generate recommendations for
this application was first developed in 2008 by Hu et
al.[2]. The authors’ approach to the problem of generating
recommendations for items that a user has not explicitly
rated was to introduce a degree-of-certainty term into the
loss function, which is proportional to the “implicit” signal
that they have a preference for a given item.
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Figure 1. System Design

Figure 2. Face Detection

3. System Overview

The whole system is shown in Fig. 1. The first four
modules: Face Detection, User Identifier, Face Feature Ex-
traction, and Sentiment Classification, are all CNN based
Deep Neural Networks but each with different architecture
and different outputs. The collaborative filtering model for
generating recommendations is based on the ALS algorithm
for matrix factorization.

The neural networks were loaded and trained using
OpenCV and PyTorch with GPU-acceleration on Google
Cloud Platform. Our scripts for scraping, loading, and
training our data were written in Python. The front and
back-end of our web app was implemented in Django, and
the collaborative filtering is done using Spark.

Face Detection The first step for a user to get a
recommendation is to take a selfie using our web applica-
tion. After preprocessing, the raw image is pass to Face
Detection Module, which is a pre-trained MTCNN[10].
Next, the Face Detection Module produces bounding boxes
correlated to the faces detected in the images. After that,
the system picks up the face with the largest bounding box
and crop the face out. The face image then be resized to
160×160 and converted to a grayscale image, before being
fed to the next module.

Facial Analysis Once a cropped image is received, the
User Identifier and the Sentiment Classification module
start working simultaneously. Here, the Sentiment Clas-
sification module can estimate the emotion of the current
user and generate a keyword based on the emotion. On the
other hand, the User Identifier can extract a 512-dimension
feature vector based on facial image and compare it to the

User ID User Face Feature
0 [0.435, 0.332, . . . ]
1 [0.221, 0.566, . . . ]
... ...

Table 1. User ID Storage

User ID Item ID Rating
0 1 2
1 1 1
... ... ...

Table 2. User Rating Storage

Item ID URL
0 “Rydi3AqMgcw”
1 “3LvWTmqn7A4”
... ...

Table 3. Item ID and URL

previously stored faces. If the user is identified as a new
user, then a new user profile will be created to store his/her
facial features and browsing history. In the other case, if the
user is a returning user, the fourth module will be activated
to generate a 16-dimension feature vector. Unlike the
previous 512-dimension vector, which is used to identify
the user, the 16-dimension vector is used for evaluating the
user’s reaction to the current playing video. More details
about the rating are discussed in section 5.

Recommendation Generation The final recommenda-
tion is composed of two parts. The first part is Emotion
Keywords Based Recommend. The keyword is acquired
from the Sentiment Classification module, and it is used
to generate a YouTube URL link. In this way, we can
generate recommendations for any user, no matter he/she is
a new or returning user. The second part is Collaborative
Filtering, which generates recommendations using the
user’s previous data. One thing to note is that this step will
be skipped if the user is a new user, and all recommendation
content will be keyword based.

Data Storage With Spark, the web server maintains a
database to store all the user data. Inside the database,
unique user ids and its correspondence feature vectors are
saved here, which will be updated once a new user regis-
ters. Moreover, unique item ids, which represent YouTube
URL, and user’s ratings are also preserved here. Table 1-3
are examples of the database.
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Figure 3. FEC Dataset

4. Data
Two separate datasets were used for this project. For

emotion classification, we used a dataset from the Kaggle
competition: Emotion and Identity Detection from Face Im-
ages. It contains 35903 48 × 48 greyscale images with hu-
man classified labels.

The dataset that was used to train the embedding net-
work is the same dataset that was used by the origi-
nal authors of the FEC network[9]. The dataset can
be found here https://research.google/tools/datasets/google-
facial-expression/.

A preview of the dataset is shown in Fig. 3. There
are 31 different fields including 3 web urls containing
the face images for each triple, along with 4 coordinates
for each triple that define the bounding box of the face
to be analyzed. Moreover, each triple was classified
into 3 mutually exclusive categories by at least 6 human
annotators according to similarity of facial expression (a
rating of 1 means that expressions 2 and 3 are most similar,
etc.). We scraped these images slowly over the course of
48 hours and our dataset before preprocessing was over 6
GB in size. We should note that since the time the original
paper was published, about 10% of the urls were no
longer active in the training set. Moreover, our test set was
approximately 40% smaller than that of the original authors.

5. Methods
The pipeline of our project takes a raw image from the

webcam or phone camera of a user, detects the faces in it,
analyzes facial information and generates recommendations
based on a collaborative filtering model that runs on the
back-end.

5.1. Neural Networks

5.1.1 Architecture

Torchvision provides many neural network architectures
that perform well in many tasks. Among them, we used
InceptionResnetV1[7] and densenet121[4] to train the
Emotion Classifier and Face Feature Extraction Model.

To acquire the desired output shape, we change the last
few layers of InceptionResnetV1 model. The output dimen-
sion of the Average pooling layer is 1792. After Dropout,

Figure 4. Network Architectures

we added two linear layers to reduce the dimension to 512
and then to 4.

5.1.2 Training

To train models with such vast numbers of parameters and
large datasets, Fine-tuning adapted to reduce the time for
training. We also created a VM instance on GCP. Following
is the environment settings for the training:

4 core CPU

Tesla k4 GPU

7.5 GB Memory

PyTorch - running on parallel computing

Face Detection Model and Face Identification Model are
pre-trained[1].

5.2. Recommendation System

5.2.1 Collaborative Filtering

Traditional collaborative filtering methods rely on an
implicit rating for every item a user has consumed. Some
signals that are typically used to generate ratings include
the number of times a user has clicked an item, how long
a user watches a video or listens to a song, etc. The aim
of our application is to generate recommendations for
users that rely exclusively on implicit feedback received
from their facial expressions. By running images of a
user’s facial expression through our neural network, we
obtain a 16-dimensional vector representation of the user’s
expression, which we then transform into an implicit rating
for the item. This transformation relies on the fact that the
embedding preserves similarity, in the sense that similar
expressions get mapped to nearby points in the embedding
space. Examples are shown in Fig. 5
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Figure 5. Expression Similarity

Figure 6. ALS Algorithm

With this assumption, we took a small sample of images
which we consider to be representative of expressions that
are happy, interested, or engaged from our training set and
defined a user’s rating of an item to be:

f(user) =

0 min
i
(distance(user, samplei)) > τ

1 min
i
(distance(user, samplei)) ≤ τ

where τ is a hyperparameter of our model, experimen-
tally derived to be 0.9. To summarize, a user’s preference
for an item is updated with a +1 if the user’s facial ex-
pression embedding falls within a threshold of any other
expression we’ve chosen in our sample. Otherwise, a user’s
interest in an item is assumed to be 0.

After obtaining implicit ratings through user-item
interactions, we generate new rating predictions for items
a user has not seen using the Alternating Least Squares
(ALS) algorithm implemented in Spark. The algorithm
works by transforming the ratings into a sparse matrix
representation and factoring this matrix into its singular
value decomposition (Fig. 6).

The (i,j)-th entry in the sparse ratings matrix is given by
user i’s rating of item j. In order to account for the degree
of uncertainty that comes with generating implicit recom-
mendations, our loss function will need to take into account
how many times a user has rated an item favorably in the

past. With this aim, the model defines two new terms, pij
and cij as follows:

pij =

{
0 rij = 0

1 rij > 0

cij = 1 + α ∗ rij
where rij is the implicit rating by user i of item j. The

term cij represents the degree of confidence in the implicit
rating, and is proportional to the number of times a user has
favorably rated an item, and the term α is a hyperparameter.
The loss function we seek to minimize is the sum of squared
errors of known ratings in the training set, weighted by our
degree of confidence in the rating:

L(x, y) =
∑
u,i

cui(pui − xTu y2i ) + λ(
∑
u

|xu|2 +
∑
i

|yi|2)

Our collaborative filtering function is written in Spark,
and runs on GCP. We feed user and item data periodically to
our database in BigQuery, and run collaborative filtering on
user-item ratings. Once recommendations have been gener-
ated for all of our users, we update our BigQuery database
with these recommendations, and later query this database
to generate recommendations for our returning users.

5.2.2 The Cold Start Problem

How do we generate recommendations for users who are
new and who our model does not yet recognize or have
ratings for? This is a general problem in the field of
recommender systems known as the Cold Start Problem.
We approach this problem using our second neural net-
work, which is trained to identify discrete emotions, such
as happy, neutral, or sad. The output of this network is used
to generate keywords for YouTube’s API, and the recom-
mendations shown to a cold-start user consist entirely of
YouTube queries based on this search result. For instance, a
new user who appears to be in a happy mood will typically
be recommended upbeat music content. This approach al-
lows the system to recommend novel items to users before
it learns what their individual preferences are.

5.3. Web Server

5.3.1 Layout Design

The web application of the project contains 5 parts:
YouTube Video Frame, Webcam Frame, Selfie Frame, Rec-
ommendation Frame, and Functional Elements Frame (Fig.
7(A)). When a user enters the main page, “getRecommend”
page, all elements of the web application are loaded, and
the server requests the permission of accessing webcam[3]
(Fig. 8). The authorization of webcam use is a prerequisite
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Figure 7. Web Display

Figure 8. Requesting the Permission of Accessing Webcam

Figure 9. Default Frames

of the regular running of the web application.

When the web application maintains a regular status,
the Webcam Frame shows the video recorded by the
front-facing camera, which generally is the face of the user.
In the meantime, the YouTube Video Frame, serving as an
entertainment service to load YouTube videos of potential
attraction to the user, will start a Chinese Guzheng music
(Fig. 9 (A)) on snow scene playing by default. The Selfie
Frame is empty with a photo frame as the background
image and Recommendation Frame loads 3 links (Fig. 9
(B)), “This Is For You”, as default.

The 4 Functional Elements, including “Take Snapshot”,
“Start Record”, “Stop Record”, and “Upload Image”, en-
able the user to interact with the web application. When the
user click “Take Snapshot”, the JavaScript function uploads
the current snapshot of the webcam to the back-end and
demands the back-end to process the image and provide a
recommendation list. After image processing with multiple
trained models, including Face Detection model, Sentiment

Figure 10. Method of Front-End Sending YouTube ID to Back-
End

Classification model and User Identifier model, the web
loads the selfie with emotion analysis in Selfie Frame and
update Recommendation Frame by loading the item list,
e.g., (YouTube URL links) generated by Recommendation
System (Fig. 7(B)). As for “Start Record” and “Stop
Record”, the “Start Record” aims to automate continuous
clicks of “Take Snapshot”, which frequently reloads
selfies with emotion analysis to Selfie Frame and update
recommendation list until the user clicks “Stop Record” to
terminate the process. The paired functional elements well
embody the user-friendly logic of web application design.
Besides using the webcam, the web application allows the
user to upload his/her images regardless of having access
to a webcam. Selecting an image from local and click
”submit” also uploads the image to the back-end through
the “POST” request, and the back-end returns the image
with emotion analysis and recommendation list to refresh
the web frames (Fig. 7(C)).

Another design of great significance in the web ap-
plication is the Recommendation Frame. Every time a
new image with emotion analysis is presented in Selfie
Frame, a “GET” request is sent to the back-end to obtain
the recommendation list (5 YouTube items in the format of
{Name, URL}) based on Recommendation System. Also,
based on the thought that the clicks of a user on a link affect
the renewal of the Recommendation System, the web will
not only load the video into YouTube Frame but also send
a “GET” request with “?YouTube ID” as the tail to the
back-end to inform the YouTube ID of the user’s click (Fig.
10) to update and strengthen the Recommendation System.

5.3.2 Back-End Design

The back-end of the web application is built by Django and
made public on the internet using Ngrok. There are four
main parts of the back-end, including “getRecommend”,
“recommend”, “goData” and “goUpdate” (Fig. 11).

The path “getRecommend” is the main page, as shown
before, allowing the user to access the service from the
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Figure 11. Back-End Design

browser. The “recommend” path is designed for image
processing from webcam or image of submission, which
identifies whether the request is “POST” and decodes the
image file inside the request. After receiving the image,
the path incurs the Face Detection model, Sentiment
Classification model, and User Identification model to
handle the image processing. Once completion, the “rec-
ommend” path saves the image with emotion analysis for
the front-end to display on the Selfie Frame. Meanwhile,
the front-end sends a “GET” request to path “goData” to
call the Recommendation System to generate a recom-
mend list in the format {Name, URL}, and reload the
Recommendation Frame. As for the path “goUpdate”, once
the YouTube link in Recommendation Frame is clicked,
the video will be loaded to YouTube Frame and the id of
clicked video will be sent to “goUpdate” as the format
of “goUpdate?YouTube ID”. After a series of simple
decoding operations, the back-end acquires the YouTube
ID of clicked video and the Recommendation System gains
fresh improvement with the help of the ID information and
reliable updating algorithm.

6. Experiment
6.1. Emotion Classification

The original dataset has seven categories, and the
validation accuracy is 63%. One potential reason for low
accuracy is that it is hard for the model to distinguish
similar emotions such as anger and disgust. After merging
similar emotions and reducing the number of categories to
four, the final validation accuracy reached 81%.

6.2. Facial Expression Embedding

We tried various architectures for the Facial Expression
Embedding Module. At first we tried to use the same ar-
chitecture as the Emotion Classifier, since they share a sim-

ilar purpose. However, the testing result only shows 59%
accuracy. To resolve this issue, we turned to densenet12,
which was proposed by Landola et al. We found the result-
ing accuracy with this architechture to be sufficient for our
purposes.

6.3. Generating implicit ratings

The problem of inferring the level of a user’s content
satisfaction based solely on their facial expression was a
novel one, and we contemplated many different approaches
throughout our project. Some considerations we had were
using a translation model or RNN to find a mapping from
the output of the embedding network to generate keywords
which we would then feed into the YouTube API directly.
This approach would require a lot of additional training and
additional data which we did not have.

The other approach was to find a mapping from the 16
dimensional embedding to a scalar which represents a user’s
implicit rating of the item. Although there are many differ-
ent ways to construct this mapping, the most interpretable
approach was to use similarity. We know what ”interested”
and ”amused” expressions look like, and because our em-
bedding preserves expression similarity, we can assume a
user is enjoying content if their expression embedding is ap-
proximately close to the embedding of other facial images
which are ”interested” or ”amused.” We manually tuned the
threshold τ in our model until we felt that it was sufficiently
good at distinguishing cues that a user is interested in con-
tent, and we also tried using different sample images to de-
fine our clusters.

7. Result
A demo of our project can be found here:

https://youtu.be/Gku3ZdkLNOY. As shown in the video,
once a snapshot is taken, the system can identify the user
in a short time. And it starts to search the database and
retrieve the user’s profile. Six recommended YouTube
videos will be provided. Among them, the first three videos
are generated by collaborative filtering, and the rest is
generated by random keywords searching. The next run
is a new user using the web app. In this case, the system
labels the user as unknown and create a new user profile.
Since there is no history rating data of this user, all six
recommended videos are generated by random keywords
searching. Meanwhile, the system keeps a log of the video
that the user watched and update his/her profile for later
recommending.

8. Conclusion
We designed an entertainment recommendation system,

which has been proven to be able to help users find relevant
videos. We used several big data analytic technologies to
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make the system fast and stable. Four separate Deep Neural
Networks and a collaborative filtering model were trained
and deployed to analyze user identities and preference pro-
files. We used BigQuery to generate and maintain a user
database. The whole system is running based on a web
server written by Django. Compared to other recommen-
dation systems, our system has the advantage that it relies
exclusively on implicit data and can generate novel recom-
mendations for new users. The principle of the system dic-
tates that it will perform even better when more users use
our system and generate more user data.

9. Individual Contribution
9.1. Qi Wang

• Put forward the idea of the whole project.

• Built the back-end by Django to handle various re-
quests.

• Merged trained models into the back-end to serve as
functional support of web application.

• Wrote the front-end using HTML, CSS, and Javascript.

• Added YouTube API as additional support to the Rec-
ommendation System.

• Introduced Ngrok technique to make the web applica-
tion public on the internet.

• Managed web branch of GitHub repository.

9.2. Xiangzhuo Ding

• Designed the framework of the project workspace.

• Managed the GitHub repository of the project, includ-
ing version control, creating and merging branches.

• Literature view of related works and read source code,
including Multi Task Convolution Neural Network, In-
ceptionResNet, and DenseNet.

• Created a PyTorch environment with CUDA support.

• Designed an image processing pipeline for the project.

• Wrote modules for data loader and training script that
can handle multiple GPU in parallel mode.

• Trained and evaluated several Neural Networks.

• Wrote different high-speed inference engines for dif-
ferent face analysis tasks.

• Merged inference engines into the web server backend.

9.3. Shahen Mirzoyan

• Discovered and reviewed the paper “A Compact Em-
bedding for Facial Expression Similarity” (Vemula-
palli & Agarwala, 2018) which was the main inspira-
tion and reference for our project

• Scraped over 80,000 URLs to obtain the original train-
ing and test data used by the authors of the above paper

• Implemented the facial identification function in the
backend, which recognizes a user’s identity using the
VGGFace2 model in PyTorch and the cosine distance
metric, and stores the user’s identity in a database

• Merged a BigQuery database into the backend for stor-
ing all user and item data in the cloud

• Literature review for implicit recommender systems
and collaborative filtering. Particularly the main
method used in this application, which is based
on “Collaborative Filtering for Implicit Feedback
Datasets” (Hu, Koren, Volinsky, 2008)

• Explored various models for interpreting facial expres-
sions as item ratings

• Wrote backend functions to map facial expression in-
ferences to an item preference profile for a user

• Wrote the collaborative filtering function in PySpark to
recommend the top N items for every user, and update
our BigQuery database with new recommendations pe-
riodically
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